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Abstract

This paper presents an effective sliver-free and quality-improved local refinement algorithm of a tetrahedral mesh for

an adaptive solution strategy. The method proposed is composed of controlled local refinement and a conventional

quality improvement process. The new feature of the proposed method is the introduction of element-wise refinement

switching between longest side bisection and octasection, to boost the quality improvement process of face swapping

and node relaxation. Numerical results show that this refinement switching plays a critical role in improving the quality

of poorly shaped elements while preserving the quality of well-shaped elements. The results also show that the proposed

method is more effective than the previously known methods, considering both the average and minimum quality.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of partial differential equations requires the partitioning of the domain into small sub-

domains, which are called elements. With decreasing device dimensions, the modeled structures of

Technology Computer Aided Design (TCAD) have become highly non-planar, and three-dimensional

(3D) simulations are required to predict real physical phenomena. The vast quantities of data required for

3D simulation produces the most dominant bottleneck in TCAD analysis [1]. To circumvent this com-

putational burden, a sophisticated adaptive solution strategy is required. In general, the adaptive solution
strategy is composed of one prerequisite step and two main steps. The prerequisite step is the initial mesh

generation, while the main steps are finding the solution for the given mesh and re-refining the mesh

according to some condition, such as error estimation [2]. The two main adaptive solution steps are re-

peated until the error obtained is below a given tolerance. The complex geometries of today�s TCAD

simulations, composed of curved surfaces and thin layers, are prone to containing poorly shaped elements
*Corresponding author.

E-mail addresses: goopymoon@hanmail.net (J.-H. Choi), krbyun@kornet.net (K.-R. Byun), hjhwang@cau.ac.kr (H.-J. Hwang).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.07.030

mail to: goopymoon@hanmail.net


J.-H. Choi et al. / Journal of Computational Physics 192 (2003) 312–324 313
in the initial mesh; therefore a local refinement algorithm yielding good quality meshes independent of the

initial mesh is desired, especially for the quality-sensitive Finite Element Method [3,4].

The generation of an initial mesh without poorly shaped elements in two dimensions is well known,

as is the improvement of the quality of the given mesh topology [5–10]. Mesh-quality improvement

techniques are generally classified into two categories: smoothing (also called node relaxation) and local

transformation. Smoothing is the movement of nodes without changes of mesh topology, i.e., without

changes of edge connectivity, and local transformation is the change of mesh topology without moving

nodes. Representatives of the best-known methods in each category are Laplacian node relaxation and
edge swapping [5,9]. Unfortunately, these improvement techniques are not as effective in three di-

mensions [11]. In addition, the initial construction of a boundary conforming tetrahedral mesh without

poorly shaped elements is not always possible [1,5,22,23]. To date, the octree is the only 3D initial mesh

generation algorithm with a strong theoretical quality guaranty, but this is not a boundary conforming

method [22]. There have been many studies to enable the generation of a good quality tetrahedral

mesh. Most of these were designed to find a better node relaxation method, but it has been pointed out

that node relaxation fails to give high-quality meshes when individually used, and does not guarantee

global optimization [23–25]. As an alternative methodology, Joe [12] has proposed an improved-quality
triangulation method that uses a combination of local transformations. Although this method suc-

ceeded in eliminating slivers, which are poorly shaped elements with almost zero volume, it cannot

guarantee the elimination of all slivers, and it is poor at improving overall mesh quality. Another

approach, by Golias, involved the tetrahedral refinement method based on Delaunay triangulation

followed by node relaxation [13]. This method was partially successful, but showed degradation of the

minimum quality.

In this paper, we propose a quality-improved local refinement method for an adaptive solution strategy

based on the element-wise refinement switching. We present details of the proposed quality-improved re-
finement method in Section 2 and numerical experiments in Section 3. In Section 4, we present the con-

clusions of our research with the use of our local refinement method with a commercial initial mesh

generator.
2. Proposed quality-improved local refinement

2.1. Overall process

It has been observed that Rivara�s 3D longest side partition shows little overall quality improvement

ability with poorly shaped elements, whereas the red/green 3D method preserved the quality regardless of

the parent�s shape [14–16]. In other studies, Golias� method partially succeeded in improving mesh quality,

and has an appropriate property for the adaptive solution strategy because of its nature of repeated local

refinement followed by the quality improvement process [13]. Rivara�s 3D longest side partition has no
provable upper bound for the number of elements produced, while Golias� method has the problem of

degradation of the minimum quality. The defects of Golias�method stem from the unstable local refinement

and Delaunay transformation, which are possible sources of slivers. To produce a better local refinement

algorithm, which contains quality improvement while preserving the quality of a well-shaped parent, we

combined Rivara�s 3D longest side partition with quality-guaranteed octasection. We then adapted Golias�
quality improvement process without the Delaunay transformation.

The basic concept of our quality-improved local refinement is shown in Fig. 1. Switching enabled local

refinement (SELR) is conducted, and then mesh improvement composed of face swapping and constrained
Laplacian node relaxation is performed until there is insignificant improvement. If the fineness or error



Fig. 1. Overview of quality-improved local refinement (cf. [13]).
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estimation calculated with the refined mesh is not satisfactory, adaptive refinement steps are taken until the

requirement is satisfied. To eliminate avoidable computational burden, prerequisite mesh improvement is

conducted for the given initial mesh before the first refinement. In Fig. 1, face swapping was introduced

first, then the node relaxation, because it was observed that the resultant mesh of octasection of SELR
becomes close to that of red/green 3D if face swapping follows immediately.

2.2. Outline of the SELR

The SELR comprises refinement of marked elements, and conformation of the mesh to remove in-

consistency in the refinement at the common face between two adjacent tetrahedral elements. Elements are

marked, based on the error estimator, mesh quality or other given criteria. Each tetrahedron has one of

SUB0, SUB1 and SUB2 depth information, and the original tetrahedral elements are initialized with depth

of SUB0. The types of depth information of uniformly refined elements are shown in Fig. 2. By applying

only refinements on the elements with this depth information, a conformative quality guaranteed mesh

could be obtained.

The SELR algorithm
/* Let s be the 3D tetrahedral grid.

Let T be the set of marked tetrahedral elements to be refined.

Let V be the set of non-conforming tetrahedral elements.



Fig. 2. Depth information of the SELR under uniform refinement.
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Let t denote tetrahedral element.
Let ti¼1;2 be the possible child of t, and ti;j¼1;2 be the possible child of ti for given i.

Let LE0 be the longest edge of t.

Let LE1 be the unique edge of ti, which is also the longest edge of a common face of ti with the original

tetrahedron t.

Let LE2 be the unique edge of ti;j corresponding to an edge of the original tetrahedron t.

Let bisection_flag be the indicator of bisection or octasection. Set true for bisection.

RefineSub0(t) function bisects t across LE0 and sets children�s depth as SUB1.

RefineSub1(t) function bisects given t :¼ ti across LE1 and sets children�s depth as SUB2.
RefineSub2(t) function bisects given t :¼ ti;j across LE2 and sets children�s depth as SUB0. */

/* 1. Refinement of Marked Elements : */

s¼ initial mesh

while (T 6¼ empty set ) {

t 2 T ;
set bisection_flag for t;

switch (depth of t) {

case SUB0: RefineSub0(t); if(bisection_flag) return;
for(each i) RefineSub1(ti);
for(each i; j) RefineSub2(ti;j);

case SUB1: RefineSub1(t); If (bisection_flag) return;

for (each i) RefineSub2(ti);
case SUB2: RefineSub2(t); }

s ¼ ðs-refined elements ) [ newly created elements;
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}

/* 2. Conformation: */

While(V 6¼ empty set ) {

t 2 V ;
RefineSubðdepth index of tÞ(t);

V ¼ ðV � tÞ [ newly created non-conforming elements;

s ¼ ðs� refined elementsÞ [ newly created conforming elements

}

As a tie-breaking rule, we chose the edge with lower vertex index if the lengths of edges are the

same. After mesh conformation, the depth information of s is reset to SUB0 to make the first bisection

of an original element in each refinement step be the longest side partition. In the refinement of each

marked element, if the total number of elements is too large or the mean ratio is poorer than
the threshold, the bisection_flag is set to true for the given marked element. The mean ratio is defined

by

Mean ratio g ¼ 12
ffiffiffiffiffiffiffi
9v23

p
P

06 i<j6 3 l
2
ij
; ð1Þ

where l is the length of edge and v is the volume of the tetrahedral element [21]. The quality threshold was

determined based on numerical experiments. We did many tests with varying marking ratios, and the re-

sultant quality of Fig. 1 had an approximate upper bound of mean ratio 0.5. This value was set as the
quality threshold for the decision of refinement switching. In the mesh conformation, non-conforming

elements are refined repeatedly according to the depth information until there is no non-conforming ele-

ment. Fig. 3 shows the mesh conformation process of SELR. In this figure dashed planes represent newly

created faces during the bisection of the to-be-refined edge with depth information of LE0, LE1 or LE2.

Bisection of each edge produces two child elements with corresponding depth information as shown in

Fig. 3. For example, bisection of LE0 produces two child elements with depth SUB1.
2.3. Property of SELR

The SELR algorithm contains the characteristics of both Bansch�s bisection and 3D-SBR (skeleton

based refinement) [17,18]. If we initialize the depth information as SUB0 in each refinement step, its

characteristics are similar to 3D-SBR; otherwise it is similar to Bansch�s method. In the former case, SELR
is distinguishable from 3D-SBR, because it is capable of refinement switching and there is no need for the

tetrahedron searching that is required in 3D-SBR [18].

In general, the refinement algorithm must provide two characteristics: boundedness and stability of the

mesh. Boundedness means that the number of elements produced by refinement should not be able to

increase to infinity and stability means that the quality of recursively refined elements should have a lower

bound on the quality. In our SELR algorithm, the proof of boundedness is trivial. Let Mn and M 0
n represent

the mesh of the nth uniform octasection and nth local refinement, respectively. Although M 0
n is not fully

nested in Mn, the number of children of M 0
n is smaller than that of Mn in each refinement step, because in the

mesh conformation process of SELR, non-conforming element cannot be further refined than the octa-

section of original element. Therefore if Mn is bounded then M 0
n is also bounded. The stability of the SELR

was examined numerically for several examples, including the test problem proposed by Maubach [19]. We

examined the Mean Ratio, Radius Ratio, Edge Ratio and Aspect Ratio [20,21], and all showed no deg-

radation below a certain level during local refinement regardless of bisection, octasection or mixture of

these. We show the results from the Maubach test with mixture of bisection and octasection in Fig. 4. Here



Fig. 3. Schematic representation of mesh conformation (cf. [18]). Dashed plane represents a newly created face during the bisection of

to-be-refined edges represented by LE0, LE1 or LE2.
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octasection was applied three times and then six bisections were applied, and this result shows a lower

bound of SELR.
3. Numerical experiments

In this section, we present numerical experiments for the role of SELR on quality improvement ability,

comparison of quality improvement ability with previously known methods, and use the method with more

realistic problems.



Fig. 4. Stability result of Maubach test using SELR. In the refinement, octasection is conducted three times and then bisection

conducted six times. No mesh improvement was applied.
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3.1. Role of refinement switching

To investigate the role of refinement switching on the quality improvement with SELR, we tested
Rivara�s Problems, which are conventionally used as stability tests of refinement algorithms [14]. The test

results of well and poorly shaped meshes of Problems 1 and 3 are shown in Fig. 5. All elements are uni-

formly refined at each refinement step. In Problem 1 (mean ratio¼ 0.885) with a well-shaped element,

bisection produced a lower average and minimum mean ratio than using SELR or octasection. This is

because the quality of the parent tetrahedron is more effectively maintained by applying octasection once
Fig. 5. The role of refinement switching in SELR. The curves annotated with AVG and MIN represent average and minimum mean

ratios, respectively, for our approach, while AVG and MIN with 2T or 8T denote those of bisection-only and octasection-only cases of

SELR, respectively. (a) Problem 1. (b) Problem 3.



J.-H. Choi et al. / Journal of Computational Physics 192 (2003) 312–324 319
rather than three bisections, even though a quality improvement process is followed. In Problem 3 (mean

ratio¼ 0.278), with a poorly shaped element, bisection and SELR showed nearly the same superior effect

for quality improvement process, compared to octasection. From these results, it is evident that switching

enabled refinement is the better choice in the early stage of refinement where the number of elements is not

of concern.

3.2. Comparison with other methods

We compared our results from testing Rivara�s Problems with quality local refinement based on sub-

division (QLRS) without local transformation and quality local refinement based on bisection (QLRB) with

Joe�s mixed local transformation [15,16]. In the case of QLRS, mixed local transformation was not shown

in the original paper, because local transformation rarely improves quality with QLRS in the uniform
refinement of a single element, as we also found using our implementation with face swapping. The results

of the comparison are shown in Fig. 6. Here all elements are uniformly refined at each refinement step.

Because the reported final mesh of QLRB contains only 64 elements [15], the quantity of data used in the

QLRB graph is less than that of QLRS or of our method. In Problems 1, 2 and 4, where the parent of the
Fig. 6. Comparison of improvement between the proposed methods and previously reported methods. AVG and MIN represent the

average and minimum mean ratios, respectively, of our approach, while AVG and MIN with a suffix represents those of the method

corresponding to the suffix. (a) Problem 1. (b) Problem 2. (c) Problem 3. (d) Problem 4.
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element has rather good shape, our method and Joe�s two methods have similar results. However, in

Problem 3 with a poorly shaped element, Joe�s method failed to improve mesh quality because Joe�s mixed

local transformation is aimed at removing slivers, rather than at improving the quality of poorly shaped

elements. Only our method showed improvement in the average value while guaranteeing a lower bound for

the minimum value; see Table 1 for the truncated average and minimum quality data of our results. In

Problem 3, the geometry has a wedge shape; therefore the quality of bisected element near a wedge cannot

be improved by the following mesh improvement process. This resulted in a slight reduction of minimum

quality; however, a lower bound was guaranteed, with slight quality recovery as refinement proceeded, as
shown in Table 1.

3.3. Use with realistic problems

Fig. 7 shows how well our approach improves distorted element by refining poorly shaped elements.

Because our approach has an approximate quality upper bound of mean ratio 0.5, we set this value as

marking threshold. Figs. 7(a) and (b) show the initial mesh composed of very poorly shaped elements and

the final mesh from the proposed method, respectively. Fig. 7(c) shows the quality improvement trend

during local refinement. To visualize the quality improvement ability of our approach, we showed the

quality trend with the red/green 3D method, which is the most widely accepted method in the adaptive

solution strategy. In this quality trend, nine times, the proposed quality-improved local refinement im-

proved the average and minimum value of the mean ratio from 0.2552 and 0.06935 to 0.73427 and 0.28614,
respectively, whereas the red/green 3D method only preserves mesh quality by unintentional uniform re-

finement resulting from poor quality of the whole elements. While Golias� method shows minimum quality

degradation even with well-shaped elements, the proposed method shows no such degradation; on the

contrary, it improves minimum quality in an overall sense or at least guarantees a lower bound [13].

Fig. 8 shows how the proposed local refinement can be used in combination with a conventional

advancing front initial mesh generator. As in the previous example, elements with a mean ratio below 0.5

were marked for refinement. Fig. 8(a) shows the initial mesh produced by the advancing front method,

and (b) shows the final mesh obtained using our approach. In Fig. 8(a), the initial mesh produced by the
advancing front method contained a few severely distorted elements, and containment of a small portion

of bad elements is the typical problem of the advancing front method [1]. In Fig. 8(b), because local

refinements were conducted on these poor elements, refinement is heavily localized. In the quality trends

of Fig. 8(c), the average mean ratio of the red/green 3D method decreased because the relative portion of

poor elements increases as the refinement on poor elements increases. In the case of the proposed

method, the initial average mean ratio of 0.82904 decreased to 0.74166 but gradually increased to 0.7706,
Table 1

Mean ratio vs. the number of elements on Rivara�s Problem 3; see Fig. 1

# of Elements Problem 3

AVG MIN

1 0.27806 0.27806

2 0.24822 0.20682

4 0.22971 0.19873

8 0.26962 0.20583

20 0.34219 0.20682

118 0.41381 0.15304

821 0.53742 0.15107

6277 0.66459 0.16193

49 594 0.76546 0.17965



Fig. 7. Bracket problem. Elements with mean ratio below 0.5 were marked for refinement. AVG and MIN represent the average and

minimum value of our approach, while those with suffix represent those of the red/green 3D method. (a) Initial mesh. (b) Final mesh

with Fig. 1. (c) Quality improvement trend.
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and the initial minimum mean ratio of 0.10618 increased to 0.50353 as refinement was repeatedly con-
ducted on the poor elements. In the quality trend of Fig. 8(c), minimum quality decreased at some stage

with the proposed approach. This is because, in some cases, bisection reduces quality a little, and this is

not fully recovered by mesh improvement; but this temporary quality reduction disappears soon if there

is no poor boundary constraint, such as a wedge. We observed that overall minimum quality, with the

proposed method, tends to improve with small fluctuations as the number of refinements of poorly

shaped elements increases.

Finally, as a real application, we show the mesh generation of a local oxidation of silicon (LOCOS)

structure based on the gradient of doping concentration, which is a prerequisite step to solving the diffusion
problem. The doping profile is assumed to have a maximum value of 1�18 cm�3 below 0.1 lm from the

upper face of the LOCOS structure, and has a Gaussian shape. Fig. 9(a) shows the initial mesh composed of

macro-elements using a layer-based method and Fig. 9(b) shows the mesh constructed after refinement on

elements that have a doping concentration gradient in excess of 10% of element average using the proposed

approach. During local refinement, the average and minimum values of mean ratio increased from 0.237 to



Fig. 8. The arch problem. Elements with mean ratio below 0.5 were marked for refinement. AVG and MIN represent the average and

minimum value of our approach, while those with suffix represent those of the red/green 3D method. (a) Initial mesh using advancing

front method. (b) Final mesh with Fig. 1. (c) Quality improvement trend.
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0.807 and 0.121 to 0.235, respectively. Because elements are marked based on the gradient of doping

concentration, not on the quality threshold, the number of refinements on a poor element is relatively small

and therefore the minimum mean ratio does not improve sufficiently compared with the previous examples.

Nonetheless, from Fig. 9(c), the quality of our approach is superior to the red/green 3D method, which
produces poorly shaped green tetrahedral elements, which are introduced to temporarily satisfy the

requirement of conformity of the mesh.

In general, local refinement in adaptive solution strategy is not aimed at the poorly shaped elements;

rather it has a tendency to depend on other criteria, such as error estimation or problem-specific

conditions, such as in the previous LOCOS example. Therefore, the quality improvement of the pro-

posed approach would typically be less than that of its maximum ability, and the amount of quality

improvement would vary with the refinement number of the poorly shaped elements. In the point of

time consuming proposed method is rather expensive. In the previous examples it took about 1 min, 75
min and 15 h, respectively, for the mesh having roughly 5000, 35 000 and 130 000 elements (with

Pentium III 1 GHz and gcc 2.9.1.66). In our implementation mesh improvement was conducted until

there is no additional improvement. Since the initial mesh of TCAD is composed of relatively few

macro elements and the size of badly shaped elements is large, badly shaped elements could be removed

at an earlier stage of adaptive refinement using the proposed approach, if element marking is properly

controlled.



Fig. 9. Local refinement of LOCOS structure. Elements that have a doping concentration gradient in excess of 10% of element average

were marked for refinement. AVG and MIN represent the average and minimum value of our approach, while those with a suffix

represent those of the red/green 3D method. (a) Initial mesh by layered method. (b) Final mesh with Fig. 1. (c) Quality improvement

trend.
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4. Conclusion

The main contribution of this paper is the development of an effective quality-improved local refinement

method for an adaptive solution strategy. The key idea of the proposed method is to improve the quality of
poorly shaped elements while preserving the quality of well-shaped elements. We have accomplished this

goal by using refinement switching between longest side bisection and octasection, followed by a con-

ventional quality improvement process. We showed that refinement switching plays an important role in

quality improvement. By applying the proposed method on the poorly shaped macro-elements produced

manually, by the layered method, or by the advancing front method, well-shaped mesh could be easily

obtained. It is observed that if the proposed local refinement is conducted on the poorly shaped elements,

intentionally or unintentionally, the minimum quality improves in an overall sense. The method is

boundary conforming and sliver-free, and could be combined with a conventional initial mesh generator,
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such as the advancing front method, to rectify the quality deficiency legacy of the initial mesh generator.

From this it is expected that the proposed method can be used as a mesh generator for an adaptive solution

strategy at an earlier stage of the adaptive solution strategy.
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